- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Chatterjee, Anushree (1)
-
Ding, Yuchen (1)
-
Hu, Yilin (1)
-
Lee, Chi_Chung (1)
-
Nagpal, Prashant (1)
-
Ribbe, Markus_M (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Enzymatic Fisher‐Tropsch (FT) process catalyzed by vanadium (V)‐nitrogenase can convert carbon monoxide (CO) to longer‐chain hydrocarbons (>C2) under ambient conditions, although this process requires high‐cost reducing agent(s) and/or the ATP‐dependent reductase as electron and energy sources. Using visible light‐activated CdS@ZnS (CZS) core‐shell quantum dots (QDs) as alternative reducing equivalent for the catalytic component (VFe protein) of V‐nitrogenase, we first report a CZS : VFe biohybrid system that enables effective photo‐enzymatic C−C coupling reactions, hydrogenating CO into hydrocarbon fuels (up to C4) that can be hardly achieved with conventional inorganic photocatalysts. Surface ligand engineering optimizes molecular and opto‐electronic coupling between QDs and the VFe protein, realizing high efficiency (internal quantum yield >56 %), ATP‐independent, photon‐to‐fuel production, achieving an electron turnover number of >900, that is 72 % compared to the natural ATP‐coupled transformation of CO into hydrocarbons by V‐nitrogenase. The selectivity of products can be controlled by irradiation conditions, with higher photon flux favoring (longer‐chain) hydrocarbon generation. The CZS : VFe biohybrids not only can find applications in industrial CO removal for high‐value‐added chemical production by using the cheap, renewable solar energy, but also will inspire related research interests in understanding the molecular and electronic processes in photo‐biocatalytic systems.more » « less
An official website of the United States government
